PlantTFDB
Plant Transcription Factor Database
v4.0
Previous version: v3.0
Transcription Factor Information
Basic Information | Signature Domain | Sequence | 
Basic Information? help Back to Top
TF ID AT5G20240.1
Common NameF5O24.130, PI
Organism
Taxonomic ID
Taxonomic Lineage
cellular organisms; Eukaryota; Viridiplantae; Streptophyta; Streptophytina; Embryophyta; Tracheophyta; Euphyllophyta; Spermatophyta; Magnoliophyta; Mesangiospermae; eudicotyledons; Gunneridae; Pentapetalae; rosids; malvids; Brassicales; Brassicaceae; Camelineae; Arabidopsis
Family MIKC_MADS
Protein Properties Length: 208aa    MW: 24046.9 Da    PI: 9.4543
Description MIKC_MADS family protein
Gene Model
Gene Model ID Type Source Coding Sequence
AT5G20240.1genomeTAIRView CDS
Signature Domain? help Back to Top
Signature Domain
No. Domain Score E-value Start End HMM Start HMM End
1SRF-TF79.32.7e-25958150
                 S---SHHHHHHHHHHHHHHHHHHHHHHHHHHT-EEEEEEE-TTSEEEEEE CS
       SRF-TF  1 krienksnrqvtfskRrngilKKAeELSvLCdaevaviifsstgklyeys 50
                 krien  nr vtfskRrng+ KKA+E+ vLCda+va+iif+s+gk+ +y+
  AT5G20240.1  9 KRIENANNRVVTFSKRRNGLVKKAKEITVLCDAKVALIIFASNGKMIDYC 58
                 79********************************************9997 PP

2K-box78.71.5e-2671169199
        K-box   1 yqkssgksleeakaeslqqelakLkkeienLqreqRhllGedLesLslkeLqqLeqqLekslkkiRskKnellleqieelqkkekelqeenkaLrkkl 98 
                  yqk sgk+l++ak+e+l++e++++kke+++Lq e+Rhl+Ged++sL+lk+L+ +e+++e++l k+R++++e+l+++ ++ +++ +e+++ + +L+++ 
  AT5G20240.1  71 YQKLSGKKLWDAKHENLSNEIDRIKKENDSLQLELRHLKGEDIQSLNLKNLMAVEHAIEHGLDKVRDHQMEILISKRRNEKMMAEEQRQLTFQLQQQE 168
                  899********************************************************************************************997 PP

        K-box  99 e 99 
                  +
  AT5G20240.1 169 M 169
                  6 PP

Protein Features ? help Back to Top
3D Structure
Database Entry ID E-value Start End InterPro ID Description
SMARTSM004325.8E-38160IPR002100Transcription factor, MADS-box
PROSITE profilePS5006630.445161IPR002100Transcription factor, MADS-box
CDDcd002651.34E-37280No hitNo description
SuperFamilySSF554559.03E-34296IPR002100Transcription factor, MADS-box
PRINTSPR004043.1E-26323IPR002100Transcription factor, MADS-box
PROSITE patternPS003500357IPR002100Transcription factor, MADS-box
PfamPF003191.5E-211057IPR002100Transcription factor, MADS-box
PRINTSPR004043.1E-262338IPR002100Transcription factor, MADS-box
PRINTSPR004043.1E-263859IPR002100Transcription factor, MADS-box
PfamPF014865.1E-1682164IPR002487Transcription factor, K-box
PROSITE profilePS5129713.40684170IPR002487Transcription factor, K-box
Gene Ontology ? help Back to Top
GO Term GO Category GO Description
GO:0006355Biological Processregulation of transcription, DNA-templated
GO:0010093Biological Processspecification of floral organ identity
GO:0030154Biological Processcell differentiation
GO:0005634Cellular Componentnucleus
GO:0005737Cellular Componentcytoplasm
GO:0003677Molecular FunctionDNA binding
GO:0003700Molecular Functiontranscription factor activity, sequence-specific DNA binding
GO:0005515Molecular Functionprotein binding
GO:0046983Molecular Functionprotein dimerization activity
Plant Ontology ? help Back to Top
PO Term PO Category PO Description
PO:0000013anatomycauline leaf
PO:0000037anatomyshoot apex
PO:0000293anatomyguard cell
PO:0003022anatomylateral root cap of primary root
PO:0005421anatomyparenchyma
PO:0006081anatomyprimary root apical meristem
PO:0009009anatomyplant embryo
PO:0009010anatomyseed
PO:0009025anatomyvascular leaf
PO:0009029anatomystamen
PO:0009030anatomycarpel
PO:0009031anatomysepal
PO:0009032anatomypetal
PO:0009046anatomyflower
PO:0009047anatomystem
PO:0009052anatomyflower pedicel
PO:0020030anatomycotyledon
PO:0020100anatomyhypocotyl
PO:0020149anatomyquiescent center
PO:0025022anatomycollective leaf structure
PO:0025281anatomypollen
PO:0001054developmental stagevascular leaf senescent stage
PO:0001078developmental stageplant embryo cotyledonary stage
PO:0001081developmental stagemature plant embryo stage
PO:0001185developmental stageplant embryo globular stage
PO:0004507developmental stageplant embryo bilateral stage
PO:0007095developmental stageLP.08 eight leaves visible stage
PO:0007611developmental stagepetal differentiation and expansion stage
PO:0007616developmental stageflowering stage
Sequence ? help Back to Top
Protein Sequence    Length: 208 aa     Download sequence    Send to blast
MGRGKIEIKR IENANNRVVT FSKRRNGLVK KAKEITVLCD AKVALIIFAS NGKMIDYCCP  60
SMDLGAMLDQ YQKLSGKKLW DAKHENLSNE IDRIKKENDS LQLELRHLKG EDIQSLNLKN  120
LMAVEHAIEH GLDKVRDHQM EILISKRRNE KMMAEEQRQL TFQLQQQEMA IASNARGMMM  180
RDHDGQFGYR VQPIQPNLQE KIMSLVID
3D Structure ? help Back to Top
Structure
PDB ID Evalue Query Start Query End Hit Start Hit End Description
1tqe_P4e-16189181Myocyte-specific enhancer factor 2B
1tqe_Q4e-16189181Myocyte-specific enhancer factor 2B
1tqe_R4e-16189181Myocyte-specific enhancer factor 2B
1tqe_S4e-16189181Myocyte-specific enhancer factor 2B
3kov_A3e-16289180Myocyte-specific enhancer factor 2A
3kov_B3e-16289180Myocyte-specific enhancer factor 2A
3kov_I3e-16289180Myocyte-specific enhancer factor 2A
3kov_J3e-16289180Myocyte-specific enhancer factor 2A
3p57_A3e-16289180Myocyte-specific enhancer factor 2A
3p57_B3e-16289180Myocyte-specific enhancer factor 2A
3p57_C3e-16289180Myocyte-specific enhancer factor 2A
3p57_D3e-16289180Myocyte-specific enhancer factor 2A
3p57_I3e-16289180Myocyte-specific enhancer factor 2A
3p57_J3e-16289180Myocyte-specific enhancer factor 2A
Search in ModeBase
Expression -- UniGene ? help Back to Top
UniGene ID E-value Expressed in
At.214030.0bud| inflorescence
Expression -- Microarray ? help Back to Top
Source ID E-value
GEO1453582580.0
Genevisible246072_at0.0
Expression AtlasAT5G20240-
AtGenExpressAT5G20240-
ATTED-IIAT5G20240-
Functional Description ? help Back to Top
Source Description
TAIRFloral homeotic gene encoding a MADS domain transcription factor. Required for the specification of petal and stamen identities.
UniProtProbable transcription factor involved in the genetic control of flower development. Is required for normal development of petals and stamens in the wild-type flower. Forms a heterodimer with APETALA3 that is required for autoregulation of both AP3 and PI genes. AP3/PI heterodimer interacts with APETALA1 or SEPALLATA3 to form a ternary complex that could be responsible for the regulation of the genes involved in the flower development. AP3/PI heterodimer activates the expression of NAP. {ECO:0000269|PubMed:8565821, ECO:0000269|PubMed:9489703}.
Function -- GeneRIF ? help Back to Top
  1. C-terminal PI motif not essential for floral organ identity function
    [PMID: 17965182]
  2. BNQ genes Are negatively regulated by AP3 and PI in petals.
    [PMID: 20305124]
  3. These results imply considerable changes in the composition and topology of the gene network controlled by AP3/PI during the course of flower development.
    [PMID: 22847437]
  4. Data indicate that C function regulator AGAMOUS and the B function regulators APETALA3 and PISTILLATA control many developmental processes in conjunction, as well as independent activities.
    [PMID: 23821642]
Binding Motif ? help Back to Top
Motif ID Method Source Motif file
MP00080ChIP-seq26531826Download
Motif logo
Cis-element ? help Back to Top
SourceLink
PlantRegMapAT5G20240.1
Regulation -- Description ? help Back to Top
Source Description
UniProtINDUCTION: Positively regulated by the meristem identity proteins APETALA1 and LEAFY with the cooperation of UFO. Repressed by silencing mediated by polycomb group (PcG) protein complex containing EMF1 and EMF2. {ECO:0000269|PubMed:11283333, ECO:0000269|PubMed:19783648}.
Regulation -- PlantRegMap ? help Back to Top
Source Upstream Regulator Target Gene
PlantRegMapRetrieveRetrieve
Regulation -- ATRM (Manually Curated Upstream Regulators) ? help Back to Top
Source Upstream Regulator (A: Activate/R: Repress)
ATRM AT1G69120 (A), AT3G23130 (R), AT3G54340 (A), AT4G36920 (A), AT5G20240 (A), AT5G61850 (A)
Regulation -- ATRM (Manually Curated Target Genes) ? help Back to Top
Source Target Gene (A: Activate/R: Repress)
ATRM AT1G57990(A), AT1G69120(R), AT1G69180(A), AT1G69490(A), AT2G15890(A), AT2G29350(A), AT3G23130(A), AT3G54340(A), AT4G26150(R), AT4G29130(A), AT4G30270(A), AT4G35770(A), AT5G20240(A), AT5G26340(A), AT5G56860(R)
Interaction -- BIND ? help Back to Top
Source Intact With Description
BINDAT1G69120AP1 interacts with PI.
BINDAT5G20240PI interacts with itself.
Interaction ? help Back to Top
Source Intact With
BioGRIDAT5G20240, AT1G24260, AT1G69120, AT1G69690
IntActSearch P48007
Phenotype -- Mutation ? help Back to Top
Source ID
T-DNA ExpressAT5G20240
Annotation -- Nucleotide ? help Back to Top
Source Hit ID E-value Description
GenBankATHMADSBOX0.0D30807.1 Arabidopsis thaliana PISTILLATA mRNA for PI protein, complete cds.
Annotation -- Protein ? help Back to Top
Source Hit ID E-value Description
RefseqNP_197524.11e-153Floral homeotic protein PISTILLATA
SwissprotP480071e-155PIST_ARATH; Floral homeotic protein PISTILLATA
TrEMBLA0A0D3B2281e-148A0A0D3B228_BRAOL; Uncharacterized protein
TrEMBLS5YL221e-148S5YL22_BRAOV; PI.b
STRINGAT5G20240.11e-152(Arabidopsis thaliana)
Orthologous Group ? help Back to Top
LineageOrthologous Group IDTaxa NumberGene Number
MalvidsOGEM53002751
Representative plantOGRP53021222
Publications ? help Back to Top
  1. Yung MH,Schaffer R,Putterill J
    Identification of genes expressed during early Arabidopsis carpel development by mRNA differential display: characterisation of ATCEL2, a novel endo-1,4-beta-D-glucanase gene.
    Plant J., 1999. 17(2): p. 203-8
    [PMID:10074717]
  2. Chen Q, et al.
    The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation.
    Development, 1999. 126(12): p. 2715-26
    [PMID:10331982]
  3. Kramer EM,Irish VF
    Evolution of genetic mechanisms controlling petal development.
    Nature, 1999. 399(6732): p. 144-8
    [PMID:10335842]
  4. Moon YH,Jung JY,Kang HG,An G
    Identification of a rice APETALA3 homologue by yeast two-hybrid screening.
    Plant Mol. Biol., 1999. 40(1): p. 167-77
    [PMID:10394955]
  5. Lawton-Rauh AL,Buckler ES,Purugganan MD
    Patterns of molecular evolution among paralogous floral homeotic genes.
    Mol. Biol. Evol., 1999. 16(8): p. 1037-45
    [PMID:10474900]
  6. Mouradov A, et al.
    A DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes.
    Dev. Genet., 1999. 25(3): p. 245-52
    [PMID:10528265]
  7. Samach A, et al.
    The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.
    Plant J., 1999. 20(4): p. 433-45
    [PMID:10607296]
  8. Honma T,Goto K
    The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals.
    Development, 2000. 127(10): p. 2021-30
    [PMID:10769227]
  9. Penmetsa RV,Cook DR
    Production and characterization of diverse developmental mutants of Medicago truncatula.
    Plant Physiol., 2000. 123(4): p. 1387-98
    [PMID:10938356]
  10. Sakai H,Krizek BA,Jacobsen SE,Meyerowitz EM
    Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development.
    Plant Cell, 2000. 12(9): p. 1607-18
    [PMID:11006335]
  11. Sheppard LA, et al.
    A DEFICIENS homolog from the dioecious tree black cottonwood is expressed in female and male floral meristems of the two-whorled, unisexual flowers.
    Plant Physiol., 2000. 124(2): p. 627-40
    [PMID:11027713]
  12. Ren T,Qu F,Morris TJ
    HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus.
    Plant Cell, 2000. 12(10): p. 1917-26
    [PMID:11041886]
  13. Riechmann JL, et al.
    Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.
    Science, 2000. 290(5499): p. 2105-10
    [PMID:11118137]
  14. Yao J,Dong Y,Morris BA
    Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor.
    Proc. Natl. Acad. Sci. U.S.A., 2001. 98(3): p. 1306-11
    [PMID:11158635]
  15. Honma T,Goto K
    Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.
    Nature, 2001. 409(6819): p. 525-9
    [PMID:11206550]
  16. Ng M,Yanofsky MF
    Activation of the Arabidopsis B class homeotic genes by APETALA1.
    Plant Cell, 2001. 13(4): p. 739-53
    [PMID:11283333]
  17. G
    early bolting in short days: an Arabidopsis mutation that causes early flowering and partially suppresses the floral phenotype of leafy.
    Plant Cell, 2001. 13(5): p. 1011-24
    [PMID:11340178]
  18. Prasad K,Sriram P,Kumar CS,Kushalappa K,Vijayraghavan U
    Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.
    Dev. Genes Evol., 2001. 211(6): p. 281-90
    [PMID:11466523]
  19. Efremova N, et al.
    Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis.
    Development, 2001. 128(14): p. 2661-71
    [PMID:11526073]
  20. Zhao D,Yu Q,Chen M,Ma H
    The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.
    Development, 2001. 128(14): p. 2735-46
    [PMID:11526079]
  21. Li J,Jia D,Chen X
    HUA1, a regulator of stamen and carpel identities in Arabidopsis, codes for a nuclear RNA binding protein.
    Plant Cell, 2001. 13(10): p. 2269-81
    [PMID:11595801]
  22. Tzeng TY,Yang CH
    A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana.
    Plant Cell Physiol., 2001. 42(10): p. 1156-68
    [PMID:11673632]
  23. Bereterbide A,Hernould M,Farbos I,Glimelius K,Mouras A
    Restoration of stamen development and production of functional pollen in an alloplasmic CMS tobacco line by ectopic expression of the Arabidopsis thaliana SUPERMAN gene.
    Plant J., 2002. 29(5): p. 607-15
    [PMID:11874573]
  24. Western TL,Cheng Y,Liu J,Chen X
    HUA ENHANCER2, a putative DExH-box RNA helicase, maintains homeotic B and C gene expression in Arabidopsis.
    Development, 2002. 129(7): p. 1569-81
    [PMID:11923195]
  25. Goff SA, et al.
    A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).
    Science, 2002. 296(5565): p. 92-100
    [PMID:11935018]
  26. Olsen KM,Womack A,Garrett AR,Suddith JI,Purugganan MD
    Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway.
    Genetics, 2002. 160(4): p. 1641-50
    [PMID:11973317]
  27. Skipper M
    Genes from the APETALA3 and PISTILLATA lineages are expressed in developing vascular bundles of the tuberous rhizome, flowering stem and flower Primordia of Eranthis hyemalis.
    Ann. Bot., 2002. 89(1): p. 83-8
    [PMID:12096822]
  28. Sundström J,Engström P
    Conifer reproductive development involves B-type MADS-box genes with distinct and different activities in male organ primordia.
    Plant J., 2002. 31(2): p. 161-9
    [PMID:12121446]
  29. Huala E,Sussex IM
    LEAFY Interacts with Floral Homeotic Genes to Regulate Arabidopsis Floral Development.
    Plant Cell, 1992. 4(8): p. 901-913
    [PMID:12297664]
  30. Schultz EA,Pickett FB,Haughn GW
    The FLO10 Gene Product Regulates the Expression Domain of Homeotic Genes AP3 and PI in Arabidopsis Flowers.
    Plant Cell, 1991. 3(11): p. 1221-1237
    [PMID:12324589]
  31. Markel H,Chandler J,Werr W
    Translational fusions with the engrailed repressor domain efficiently convert plant transcription factors into dominant-negative functions.
    Nucleic Acids Res., 2002. 30(21): p. 4709-19
    [PMID:12409462]
  32. Zik M,Irish VF
    Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.
    Plant Cell, 2003. 15(1): p. 207-22
    [PMID:12509532]
  33. J
    DNA sequence variation in BpMADS2 gene in two populations of Betula pendula.
    Mol. Ecol., 2003. 12(2): p. 369-84
    [PMID:12535088]
  34. Yoshida K,Kamiya T,Kawabe A,Miyashita NT
    DNA polymorphism at the ACAULIS5 locus of the wild plant Arabidopsis thaliana.
    Genes Genet. Syst., 2003. 78(1): p. 11-21
    [PMID:12655134]
  35. Alvarez-Venegas R, et al.
    ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes.
    Curr. Biol., 2003. 13(8): p. 627-37
    [PMID:12699618]
  36. Lamb RS,Irish VF
    Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages.
    Proc. Natl. Acad. Sci. U.S.A., 2003. 100(11): p. 6558-63
    [PMID:12746493]
  37. Kotake T,Takada S,Nakahigashi K,Ohto M,Goto K
    Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes.
    Plant Cell Physiol., 2003. 44(6): p. 555-64
    [PMID:12826620]
  38. Parenicová L, et al.
    Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world.
    Plant Cell, 2003. 15(7): p. 1538-51
    [PMID:12837945]
  39. Golovkin M,Reddy AS
    Expression of U1 small nuclear ribonucleoprotein 70K antisense transcript using APETALA3 promoter suppresses the development of sepals and petals.
    Plant Physiol., 2003. 132(4): p. 1884-91
    [PMID:12913145]
  40. Yang Y,Fanning L,Jack T
    The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA.
    Plant J., 2003. 33(1): p. 47-59
    [PMID:12943540]
  41. Yang Y,Xiang H,Jack T
    pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development.
    Plant J., 2003. 33(1): p. 177-88
    [PMID:12943551]
  42. Bowman JL, et al.
    SUPERMAN, a regulator of floral homeotic genes in Arabidopsis.
    Development, 1992. 114(3): p. 599-615
    [PMID:1352237]
  43. Byzova M,Verduyn C,De Brouwer D,De Block M
    Transforming petals into sepaloid organs in Arabidopsis and oilseed rape: implementation of the hairpin RNA-mediated gene silencing technology in an organ-specific manner.
    Planta, 2004. 218(3): p. 379-87
    [PMID:14534787]
  44. Stellari GM,Jaramillo MA,Kramer EM
    Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms.
    Mol. Biol. Evol., 2004. 21(3): p. 506-19
    [PMID:14694075]
  45. Wellmer F,Riechmann JL,Alves-Ferreira M,Meyerowitz EM
    Genome-wide analysis of spatial gene expression in Arabidopsis flowers.
    Plant Cell, 2004. 16(5): p. 1314-26
    [PMID:15100403]
  46. Yu H, et al.
    Floral homeotic genes are targets of gibberellin signaling in flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2004. 101(20): p. 7827-32
    [PMID:15128937]
  47. Lee JY, et al.
    Activation of CRABS CLAW in the Nectaries and Carpels of Arabidopsis.
    Plant Cell, 2005. 17(1): p. 25-36
    [PMID:15598802]
  48. Yang Y,Jack T
    Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins.
    Plant Mol. Biol., 2004. 55(1): p. 45-59
    [PMID:15604664]
  49. Gómez-Mena C,de Folter S,Costa MM,Angenent GC,Sablowski R
    Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis.
    Development, 2005. 132(3): p. 429-38
    [PMID:15634696]
  50. Zahn LM,Leebens-Mack J,DePamphilis CW,Ma H,Theissen G
    To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms.
    J. Hered., 2005 May-Jun. 96(3): p. 225-40
    [PMID:15695551]
  51. Di Stilio VS,Kramer EM,Baum DA
    Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) - a new model for the study of dioecy.
    Plant J., 2005. 41(5): p. 755-66
    [PMID:15703062]
  52. Kazama Y,Koizumi A,Uchida W,Ageez A,Kawano S
    Expression of the floral B-function gene SLM2 in female flowers of Silene latifolia infected with the smut fungus Microbotryum violaceum.
    Plant Cell Physiol., 2005. 46(5): p. 806-11
    [PMID:15755743]
  53. Tsai WC, et al.
    PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development.
    Plant Cell Physiol., 2005. 46(7): p. 1125-39
    [PMID:15890679]
  54. Teixeira RT,Farbos I,Glimelius K
    Expression levels of meristem identity and homeotic genes are modified by nuclear-mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus.
    Plant J., 2005. 42(5): p. 731-42
    [PMID:15918886]
  55. Nawy T, et al.
    Transcriptional profile of the Arabidopsis root quiescent center.
    Plant Cell, 2005. 17(7): p. 1908-25
    [PMID:15937229]
  56. Schneider A, et al.
    A transposon-based activation-tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations.
    FEBS Lett., 2005. 579(21): p. 4622-8
    [PMID:16087178]
  57. Berbel A, et al.
    Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif.
    Plant Physiol., 2005. 139(1): p. 174-85
    [PMID:16113230]
  58. Kim S, et al.
    Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Plant J., 2005. 43(5): p. 724-44
    [PMID:16115069]
  59. Nakahigashi K,Jasencakova Z,Schubert I,Goto K
    The Arabidopsis heterochromatin protein1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin.
    Plant Cell Physiol., 2005. 46(11): p. 1747-56
    [PMID:16131496]
  60. Xu Y,Teo LL,Zhou J,Kumar PP,Yu H
    Floral organ identity genes in the orchid Dendrobium crumenatum.
    Plant J., 2006. 46(1): p. 54-68
    [PMID:16553895]
  61. Sundström JF,Nakayama N,Glimelius K,Irish VF
    Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Plant J., 2006. 46(4): p. 593-600
    [PMID:16640596]
  62. Guyomarc'h S, et al.
    MGOUN3: evidence for chromatin-mediated regulation of FLC expression.
    J. Exp. Bot., 2006. 57(9): p. 2111-9
    [PMID:16728410]
  63. Hurtado L,Farrona S,Reyes JC
    The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana.
    Plant Mol. Biol., 2006. 62(1-2): p. 291-304
    [PMID:16845477]
  64. Bowman JL,Smyth DR,Meyerowitz EM
    Genetic interactions among floral homeotic genes of Arabidopsis.
    Development, 1991. 112(1): p. 1-20
    [PMID:1685111]
  65. Szécsi J, et al.
    BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size.
    EMBO J., 2006. 25(16): p. 3912-20
    [PMID:16902407]
  66. Germann S,Juul-Jensen T,Letarnec B,Gaudin V
    DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci.
    Plant J., 2006. 48(1): p. 153-63
    [PMID:16972870]
  67. Carlsson J, et al.
    Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Plant J., 2007. 49(3): p. 452-62
    [PMID:17217466]
  68. Kalivas A,Pasentsis K,Polidoros AN,Tsaftaris AS
    Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation.
    DNA Seq., 2007. 18(2): p. 120-30
    [PMID:17364823]
  69. Yadav SR,Prasad K,Vijayraghavan U
    Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.
    Genetics, 2007. 176(1): p. 283-94
    [PMID:17409064]
  70. Zhao L,Kim Y,Dinh TT,Chen X
    miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems.
    Plant J., 2007. 51(5): p. 840-9
    [PMID:17573799]
  71. Jaramillo MA,Kramer EM
    Molecular evolution of the petal and stamen identity genes, APETALA3 and PISTILLATA, after petal loss in the Piperales.
    Mol. Phylogenet. Evol., 2007. 44(2): p. 598-609
    [PMID:17576077]
  72. Cao A,Jain A,Baldwin JC,Raghothama KG
    Phosphate differentially regulates 14-3-3 family members and GRF9 plays a role in Pi-starvation induced responses.
    Planta, 2007. 226(5): p. 1219-30
    [PMID:17598127]
  73. Nag A,Yang Y,Jack T
    DORNROSCHEN-LIKE, an AP2 gene, is necessary for stamen emergence in Arabidopsis.
    Plant Mol. Biol., 2007. 65(3): p. 219-32
    [PMID:17682829]
  74. Poupin MJ, et al.
    Isolation of the three grape sub-lineages of B-class MADS-box TM6, PISTILLATA and APETALA3 genes which are differentially expressed during flower and fruit development.
    Gene, 2007. 404(1-2): p. 10-24
    [PMID:17920788]
  75. Piwarzyk E,Yang Y,Jack T
    Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function.
    Plant Physiol., 2007. 145(4): p. 1495-505
    [PMID:17965182]
  76. Ackerman CM, et al.
    B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI.
    Planta, 2008. 227(4): p. 741-53
    [PMID:17985156]
  77. Zhang B,Su X,Zhou X
    A MADS-box gene of Populus deltoides expressed during flower development and in vegetative organs.
    Tree Physiol., 2008. 28(6): p. 929-34
    [PMID:18381273]
  78. Mara CD,Irish VF
    Two GATA transcription factors are downstream effectors of floral homeotic gene action in Arabidopsis.
    Plant Physiol., 2008. 147(2): p. 707-18
    [PMID:18417639]
  79. Leseberg CH, et al.
    Interaction study of MADS-domain proteins in tomato.
    J. Exp. Bot., 2008. 59(8): p. 2253-65
    [PMID:18487636]
  80. Li J, et al.
    The S locus-linked Primula homeotic mutant sepaloid shows characteristics of a B-function mutant but does not result from mutation in a B-function gene.
    Plant J., 2008. 56(1): p. 1-12
    [PMID:18564384]
  81. Melzer R,Verelst W,Theissen G
    The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in 'floral quartet'-like complexes in vitro.
    Nucleic Acids Res., 2009. 37(1): p. 144-57
    [PMID:19033361]
  82. Cantone C,Sica M,Gaudio L,Aceto S
    The OrcPI locus: genomic organization, expression pattern, and noncoding regions variability in Orchis italica (Orchidaceae) and related species.
    Gene, 2009. 434(1-2): p. 9-15
    [PMID:19162144]
  83. Immink RG, et al.
    SEPALLATA3: the 'glue' for MADS box transcription factor complex formation.
    Genome Biol., 2009. 10(2): p. R24
    [PMID:19243611]
  84. Melzer R,Theissen G
    Reconstitution of 'floral quartets' in vitro involving class B and class E floral homeotic proteins.
    Nucleic Acids Res., 2009. 37(8): p. 2723-36
    [PMID:19276203]
  85. Benlloch R, et al.
    Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula.
    Plant J., 2009. 60(1): p. 102-11
    [PMID:19500303]
  86. Liu X, et al.
    The SPOROCYTELESS/NOZZLE gene is involved in controlling stamen identity in Arabidopsis.
    Plant Physiol., 2009. 151(3): p. 1401-11
    [PMID:19726570]
  87. Kim SY,Zhu T,Sung ZR
    Epigenetic regulation of gene programs by EMF1 and EMF2 in Arabidopsis.
    Plant Physiol., 2010. 152(2): p. 516-28
    [PMID:19783648]
  88. Matsui K,Ohme-Takagi M
    Detection of protein-protein interactions in plants using the transrepressive activity of the EAR motif repression domain.
    Plant J., 2010. 61(4): p. 570-8
    [PMID:19929880]
  89. Litt A,Kramer EM
    The ABC model and the diversification of floral organ identity.
    Semin. Cell Dev. Biol., 2010. 21(1): p. 129-37
    [PMID:19948236]
  90. Kagale S,Links MG,Rozwadowski K
    Genome-wide analysis of ethylene-responsive element binding factor-associated amphiphilic repression motif-containing transcriptional regulators in Arabidopsis.
    Plant Physiol., 2010. 152(3): p. 1109-34
    [PMID:20097792]
  91. Mara CD,Huang T,Irish VF
    The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling.
    Plant Cell, 2010. 22(3): p. 690-702
    [PMID:20305124]
  92. Urbanus SL, et al.
    Intercellular transport of epidermis-expressed MADS domain transcription factors and their effect on plant morphology and floral transition.
    Plant J., 2010. 63(1): p. 60-72
    [PMID:20374529]
  93. Irish VF
    The flowering of Arabidopsis flower development.
    Plant J., 2010. 61(6): p. 1014-28
    [PMID:20409275]
  94. Causier B,Castillo R,Xue Y,Schwarz-Sommer Z,Davies B
    Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny.
    Mol. Biol. Evol., 2010. 27(11): p. 2651-64
    [PMID:20566474]
  95. L
    Ectopic expression of TrPI, a Taihangia rupestris (Rosaceae) PI ortholog, causes modifications of vegetative architecture in Arabidopsis.
    J. Plant Physiol., 2010. 167(18): p. 1613-21
    [PMID:20828868]
  96. Urbanus SL,Dinh QD,Angenent GC,Immink RG
    Investigation of MADS domain transcription factor dynamics in the floral meristem.
    Plant Signal Behav, 2010. 5(10): p. 1260-2
    [PMID:20861681]
  97. Sasaki K, et al.
    Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind.
    Mol. Genet. Genomics, 2010. 284(5): p. 399-414
    [PMID:20872230]
  98. Setter TL, et al.
    Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought.
    J. Exp. Bot., 2011. 62(2): p. 701-16
    [PMID:21084430]
  99. Shin R,Jez JM,Basra A,Zhang B,Schachtman DP
    14-3-3 proteins fine-tune plant nutrient metabolism.
    FEBS Lett., 2011. 585(1): p. 143-7
    [PMID:21094157]
  100. Zhang J, et al.
    Genetic alteration with variable intron/exon organization amongst five PI-homoeologous genes in Platanus acerifolia.
    Gene, 2011. 473(2): p. 82-91
    [PMID:21112379]
  101. Kaufmann K,Nagasaki M,J
    Modelling the Molecular Interactions in the Flower Developmental Network of Arabidopsis thaliana.
    Stud Health Technol Inform, 2011. 162: p. 279-97
    [PMID:21685577]
  102. Zhang Y, et al.
    Functional analysis of the two Brassica AP3 genes involved in apetalous and stamen carpelloid phenotypes.
    PLoS ONE, 2011. 6(6): p. e20930
    [PMID:21738595]
  103. Arabidopsis Interactome Mapping Consortium
    Evidence for network evolution in an Arabidopsis interactome map.
    Science, 2011. 333(6042): p. 601-7
    [PMID:21798944]
  104. Romanel E, et al.
    Reproductive Meristem22 is a unique marker for the early stages of stamen development.
    Int. J. Dev. Biol., 2011. 55(6): p. 657-64
    [PMID:21948714]
  105. Chen MK,Hsieh WP,Yang CH
    Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues.
    J. Exp. Bot., 2012. 63(2): p. 941-61
    [PMID:22068145]
  106. Smaczniak C, et al.
    Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(5): p. 1560-5
    [PMID:22238427]
  107. Lv LL, et al.
    Cloning and expression analysis of a PISTILLATA homologous gene from pineapple (Ananas comosus L. Merr).
    Int J Mol Sci, 2012. 13(1): p. 1039-53
    [PMID:22312303]
  108. Kaufmann K,Nagasaki M,J
    Modelling the molecular interactions in the flower developmental network of Arabidopsis thaliana.
    In Silico Biol. (Gedrukt), 2010. 10(1): p. 125-43
    [PMID:22430225]
  109. Wuest SE, et al.
    Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA.
    Proc. Natl. Acad. Sci. U.S.A., 2012. 109(33): p. 13452-7
    [PMID:22847437]
  110. Meinke DW
    A survey of dominant mutations in Arabidopsis thaliana.
    Trends Plant Sci., 2013. 18(2): p. 84-91
    [PMID:22995285]
  111. Krogan NT,Hogan K,Long JA
    APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19.
    Development, 2012. 139(22): p. 4180-90
    [PMID:23034631]
  112. Fernandez L,Cha
    Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine.
    Plant J., 2013. 73(6): p. 918-28
    [PMID:23181568]
  113. Burgos-Rivera B,Dawe RK
    An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis.
    PLoS ONE, 2012. 7(12): p. e51388
    [PMID:23236491]
  114. Kamata N,Okada H,Komeda Y,Takahashi T
    Mutations in epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis thaliana.
    Plant J., 2013. 75(3): p. 430-40
    [PMID:23590515]

  115. Control of reproductive floral organ identity specification in Arabidopsis by the C function regulator AGAMOUS.
    Plant Cell, 2013. 25(7): p. 2482-503
    [PMID:23821642]
  116. Le MH,Cao Y,Zhang XC,Stacey G
    LIK1, a CERK1-interacting kinase, regulates plant immune responses in Arabidopsis.
    PLoS ONE, 2014. 9(7): p. e102245
    [PMID:25036661]
  117. Jin J, et al.
    An Arabidopsis Transcriptional Regulatory Map Reveals Distinct Functional and Evolutionary Features of Novel Transcription Factors.
    Mol. Biol. Evol., 2015. 32(7): p. 1767-73
    [PMID:25750178]
  118. Sakai H,Medrano LJ,Meyerowitz EM
    Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries.
    Nature, 1995. 378(6553): p. 199-203
    [PMID:7477325]
  119. Purugganan MD,Rounsley SD,Schmidt RJ,Yanofsky MF
    Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family.
    Genetics, 1995. 140(1): p. 345-56
    [PMID:7635298]
  120. Liu Z,Meyerowitz EM
    LEUNIG regulates AGAMOUS expression in Arabidopsis flowers.
    Development, 1995. 121(4): p. 975-91
    [PMID:7743940]
  121. Angenent GC,Busscher M,Franken J,Dons HJ,van Tunen AJ
    Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis.
    Plant Cell, 1995. 7(5): p. 507-16
    [PMID:7780304]
  122. Levin JZ,Meyerowitz EM
    UFO: an Arabidopsis gene involved in both floral meristem and floral organ development.
    Plant Cell, 1995. 7(5): p. 529-48
    [PMID:7780306]
  123. Jack T,Fox GL,Meyerowitz EM
    Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity.
    Cell, 1994. 76(4): p. 703-16
    [PMID:7907276]
  124. Okamoto H,Yano A,Shiraishi H,Okada K,Shimura Y
    Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus.
    Plant Mol. Biol., 1994. 26(1): p. 465-72
    [PMID:7948893]
  125. Goto K,Meyerowitz EM
    Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.
    Genes Dev., 1994. 8(13): p. 1548-60
    [PMID:7958839]
  126. Clark SE,Running MP,Meyerowitz EM
    CLAVATA1, a regulator of meristem and flower development in Arabidopsis.
    Development, 1993. 119(2): p. 397-418
    [PMID:8287795]
  127. Krizek BA,Meyerowitz EM
    The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function.
    Development, 1996. 122(1): p. 11-22
    [PMID:8565821]
  128. Bouhidel K,Irish VF
    Cellular interactions mediated by the homeotic PISTILLATA gene determine cell fate in the Arabidopsis flower.
    Dev. Biol., 1996. 174(1): p. 22-31
    [PMID:8626018]
  129. Krizek BA,Meyerowitz EM
    Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(9): p. 4063-70
    [PMID:8633017]
  130. Riechmann JL,Krizek BA,Meyerowitz EM
    Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS.
    Proc. Natl. Acad. Sci. U.S.A., 1996. 93(10): p. 4793-8
    [PMID:8643482]
  131. McGonigle B,Bouhidel K,Irish VF
    Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression.
    Genes Dev., 1996. 10(14): p. 1812-21
    [PMID:8698240]
  132. Riechmann JL,Wang M,Meyerowitz EM
    DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS.
    Nucleic Acids Res., 1996. 24(16): p. 3134-41
    [PMID:8774892]
  133. Samach A,Kohalmi SE,Motte P,Datla R,Haughn GW
    Divergence of function and regulation of class B floral organ identity genes.
    Plant Cell, 1997. 9(4): p. 559-70
    [PMID:9144961]
  134. Jack T,Sieburth L,Meyerowitz E
    Targeted misexpression of AGAMOUS in whorl 2 of Arabidopsis flowers.
    Plant J., 1997. 11(4): p. 825-39
    [PMID:9161038]
  135. Heard J,Caspi M,Dunn K
    Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily.
    Mol. Plant Microbe Interact., 1997. 10(5): p. 665-76
    [PMID:9204570]
  136. Riechmann JL,Meyerowitz EM
    Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity.
    Mol. Biol. Cell, 1997. 8(7): p. 1243-59
    [PMID:9243505]
  137. Sessions A, et al.
    ETTIN patterns the Arabidopsis floral meristem and reproductive organs.
    Development, 1997. 124(22): p. 4481-91
    [PMID:9409666]
  138. Sablowski RW,Meyerowitz EM
    A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA.
    Cell, 1998. 92(1): p. 93-103
    [PMID:9489703]
  139. Hill TA,Day CD,Zondlo SC,Thackeray AG,Irish VF
    Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.
    Development, 1998. 125(9): p. 1711-21
    [PMID:9521909]
  140. Kramer EM,Dorit RL,Irish VF
    Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages.
    Genetics, 1998. 149(2): p. 765-83
    [PMID:9611190]
  141. Kang HG,Jeon JS,Lee S,An G
    Identification of class B and class C floral organ identity genes from rice plants.
    Plant Mol. Biol., 1998. 38(6): p. 1021-9
    [PMID:9869408]
  142. Purugganan MD,Suddith JI
    Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana.
    Genetics, 1999. 151(2): p. 839-48
    [PMID:9927474]